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Abstract. The PPSZ algorithm (Paturi et al., FOCS 1998) is the fastest
known algorithm for k-SAT. We show how to extend the algorithm and
its analysis to (d, k)-Clause Satisfaction Problems where each variable
ranges over d di↵erent values. Given an input instance with a unique
satisfying assignment, the resulting algorithm is the fastest known algo-
rithm for (d, k)-CSP except when (d, k) is (3, 2) or (4, 2). For the gen-
eral case of multiple satisfying assignments, our algorithm is the fastest
known for all k � 4.

1 Introduction

In its full generality, the Constraint Satisfaction Problem is NP-complete, so
most researchers believe that we will never find an e�cient algorithm for it.
Worse, even getting a substantial edge over trivial exhaustive search is deemed
unlikely by most in the community. Far from despairing, people have tried sev-
eral routes around this. (1) Finding heuristics that work well in practice [3]. (2)
Restricting the constraint language (i.e., what types of constraints are allowed).
This area evolves around the famous CSP Dichotomy Conjecture by Feder and
Vardi [6] and has a strong algebraic flavour (see Krokhin, Bulatov, and Jeav-
ons [12] for a survey). (3) Restricting the structure of the instance rather than
the constraint language (e.g. Grohe and Marx [9], Szeider [18], Allender, Chen,
Lou, Papakonstantinou, and Tang [1]); see Grohe [8] for a survey on both (2)
and (3). (4) Coming up with moderately exponential algorithms.

The study of moderately exponential algorithms has been especially fruitful
in two areas: algorithms for k-satisfiability (short k-SAT) and graph colorability.
For example, the algorithm PPSZ solves 3-SAT in O(1.308n) (Paturi, Pudlák,
Saks, and Zane [14], Hertli [10]) instead of the trivial 2n; Beigel and Eppstein [2]
show how to solve 3-colorability in time O(1.3289n) instead of the trivial 3n;
Björklund and Husfeldt [4] solve k-colorability in time O(2npoly(n)) instead of
the trivial kn.

We focus on the general constraint satisfaction problem where every variable
takes on a value in [d] := {1, . . . , d} and the only structural restriction is that

1 Dominik Scheder gratefully acknowledges support by the National Natural Science
Foundation of China under grant 61502300.
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each constraint may depend on at most k variables. Every constraint can be
written as the conjunction of at most dk clauses, i.e., disjunctive constraints like
(x

1

6= 3_x
2

6= 4_x
1

6= 2). Since d and k are considered constant values, we can
re-write an instance as a conjunction of clauses. We call the resulting formula
a (d, k)-clause satisfaction formula and the corresponding decision problem the
clause satisfaction problem. We abbreviate both by (d, k)-ClSP. Note that k-SAT
is the same as (2, k)-ClSP and d-colorability is a special case of (d, 2)-ClSP.

In this paper we generalize the PPSZ k-SAT algorithm [14] and Hertli’s analy-
sis [10] to (d, k)-ClSP. While it is rather straightforward to adapt the algorithm
to handle values d � 3, analyzing its running time is much more challenging
than in the Boolean (d = 2) case. This is in contrast to Schöning’s random walk
algorithm [17], where both algorithm and analysis generalize easily to d � 3.

Which Running Time Can We Expect? We measure the running time of an
algorithm in terms of n, the number of variables in the input formula F . Trivial
brute-force search runs in time O⇤ (dn)3, a baseline against which we measure
our algorithms. If P 6= NP, we will not find a polynomial time algorithm for
(d, k)-CSP (expect for the two trivial cases d = 1 and k = 1, and for (d, k) =
(2, 2), which is 2-SAT). Under the Exponential Time Hypothesis [11], there is
some c > 0 such that every algorithm for (d, 2)-ClSP takes time at least ⌦ (dcn)
(Traxler [19]). In other words, (d, k)-ClSP becomes strictly more complex as d
increases, even for k = 2. This stands in contrast to d-Colorability, which can
be solved in O⇤(2n) time [4], for every d. Thus, under the Exponential Time
Hypothesis, (d, 2)-ClSP is strictly more complex than d-Colorability.

1.1 Previous Results

For k-SAT, the currently fastest known (randomized) algorithm is the PPSZ
algorithm by Paturi, Pudlák, Saks and Zane [14]. For instances with a unique
satisfying assignment they give an elegant running time analysis. We call this
case UniqueSAT (or UniqueClSP for d � 3). For the general case (if the instance
has multiple satisfying assignments), the analysis becomes much more di�cult,
and it took over ten years until Hertli [10] showed how to obtain the UniqueSAT
time bound in the general case as well.

There are several moderately exponential algorithms for (d, k)-ClSP. For ex-
ample, a simple random walk algorithm by Schöning [17] solves (d, k)-ClSP in

time O⇤
⇣⇣

d(k�1)

k

⌘
n

⌘
. Beigel and Eppstein gave an algorithm for (d, 2)-ClSP

running in time O((0.4518d)n) for d > 3. Feder and Motwani [5] give an (d, 2)-
ClSP algorithm based on the PPZ algorithm [15], the predecessor of the PPSZ
algorithm, improving on the algorithm by Beigel and Eppstein for large d. Li, Li,
Liu, and Xu [13] generalized this to (d, k)-ClSP, but with a sub-optimal weaker
analysis. Scheder [16] showed how to use the full power of PPZ for (d, k)-ClSP.

3 The notation O⇤(f(n)) means f(n) · 2o(n), since we can safely ignore subexponential
factors.
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A generic technique for turning any k-SAT algorithm into a (d, k)-ClSP al-
gorithm is downsampling: for each variable x in F , randomly forbid all but 2
colors. The resulting instance F 0 is a (2, k)-ClSP and can be solved by any o↵-
the-shelf k-SAT algorithm A. We call this algorithm “downsampling + A”. Note
that if F is unsatisfiable then F 0 is; if F is satisfiable then F 0 is satisfiable with
probability at least (2/d)n.

1.2 Our Contribution

We generalize PPSZ to (d, k)-ClSP and analyze its running time. Our upper
bound for UniqueClSP is of the form O⇤ �dSd,k

n

�
where S

d,k

< 1 is some constant
depending on the number of colors d and the arity k of the constraints. We have
a complicated but more or less explicit formula for S

d,k

(involving a sum and an
integral). However, there is an intuitive explanation “what S

d,k

is”:
Consider the following random experiment: Let T be an infinite rooted tree

in which every even-level vertex (this includes the root, which has level 0) has
k� 1 children, and every odd-level vertex has d� 1 children (there are no leafs).
Take d�1 disjoint copies of T , choose a value p 2 [0, 1] uniformly at random and
delete each odd-level vertex of the d� 1 trees with probability p, independently.
Let Y be the number of trees in which this deletion still leaves an infinite path
starting at the root. Obviously, Y is a random variable and 0  Y  d � 1.
Define S

d,k

:= E [log
d

(1 + Y )]. The full version of this paper will give details on
how to compute S

d,k

more explicitly.

Theorem 1.1. There exists a randomized algorithm for Unique-(d, k)-ClSP with
running time O⇤(dSd,k

n).

A randomized algorithm in this context means one that, given a satisfiable
input instance, returns a satisfying with probability at least 1/2. In the general
case (when the input formula may have multiple satisfying assignments), we fail
to match this running time for k = 2, 3. This failure may well be an artifact of
our analysis and not reflect the true success probability of PPSZ. Let G

d,k

:=

max
⇣
S
d,k

, 1� 1

2 ln(d)

⌘
.

Theorem 1.2. There exists a randomized algorithm for (d, k)-ClSP with one-
sided error that runs in time O⇤(dGd,k

n).

It turns out that G
d,k

= S
d,k

for k � 4, so for k � 4 our analysis yields the same
performance bounds for the unique and the general case:

Lemma 1.3. If k � 4 then S
d,k

� 1� 1

2 ln(d)

and therefore S
d,k

= G
d,k

.

The proof of Lemma 1.3 is quite technical and contained in the full version of this
paper. In the general case, i.e., if F may have multiple satisfying assignments,
we also solve an open problem of Hertli [10]: He made a slight (and natural)
change to PPSZ but conjectured this change to be unnecessary. We show that
this is indeed the case. Furthermore, our proof actually gives a bound on the
probability that a specific satisfying assignment ↵ is returned, whereas [10] only
gave a bound that some satisfying assignment is returned.
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d k PPSZ Unique PPSZ General BE [2] FM [5] Downsampling+ 2-SAT

3 2 1.434 1.820 1.356 1.5 1.5
4 2 1.849 2.427 1.808 2 2
5 2 2.254 3.033 2.259 2.5 2.5
6 2 2.652 3.640 2.711 2.994 3
10 2 4.208 6.066 4.518 4.529 5
15 2 6.115 9.098 6.777 6.424 7.5

Table 1. Constants c so that the algorithm for (d, 2)-ClSP runs in time cn+o(n)

d k PPSZ Unique PPSZ General PPZ [16] Downsampling+PPSZ

3 3 1.901 1.901 2.162 1.961
4 3 2.479 2.479 2.729 2.615
5 3 3.049 3.049 3.291 3.268
10 3 5.844 6.066 6.069 6.536
11 3 6.397 6.672 (*) 6.621 7.189
15 3 8.602 9.098 (*) 8.821 9.803

3 4 2.153 2.153 2.351 2.204
4 4 2.823 2.823 3.014 2.938
15 4 10.006 10.006 10.176 11.018

3 5 2.310 2.310 2.471 2.355
4 5 3.040 3.040 3.195 3.139
15 5 10.906 10.906 11.045 11.771

Table 2. Constants c so that the algorithm for (d, k)-ClSP runs in time cn+o(n). For
(*) (d, 3), d � 11, PPSZ seems to be worse than PPZ. This is of course not true—PPSZ
is subsumes PPZ; it is simply a shortfall of our analysis in Section 4.

Asymptotics. We want to gauge the performance of several (d, k)-ClSP algo-
rithms for large d. For this, we define the savings of an algorithm to be the
largest c such that it solves (d, k)-ClSP in time O⇤ � d

n

2

cn

�
. Note that the enumer-

ator in this definition is 2cn, not dcn. This is because we simply do not know any
algorithm that solves (d, k)-ClSP in time O⇤ �d(1�✏

k

)n

�
for ✏

k

> 0 independent
of d.

Theorem 1.4. For k � 2 and large d, the savings of PPSZ for (d, k)-ClSP

converge to log
2

(e)(1� S
2,k

), and 1� S
2,k

= � R
1

0

ln(1� rk�1)dr .

This means the savings for large d are a factor log
2

(e) ⇡ 1.44 larger than the
savings for k-SAT. It should be mentioned that for large d the advantage of PPSZ
over PPZ vanishes, i.e., their savings converge, for each fixed k. A detailed proof
of Theorem 1.4 is contained in the full version of this paper. We compare the
savings of several algorithms in Table 3.
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k PPSZ (and PPZ) Downsampling+PPSZ Schöning

general k log
2

(e)(1� S
2,k

) 1� S
2,k

log
2

⇣
k

k�1

⌘

2 1.44 1 1
3 0.885 0.613 0.585
4 0.642 0.445 0.415
5 0.504 0.349 0.322

k !1 ⇡

2
log2(e)

6k

⇡ 2.371

k

⇡

2

6k

⇡ 1.644

k

log2(e)

k

⇡ 1.44

k

Table 3. The savings of several (d, k)-ClSP algorithms. For PPSZ and PPZ the savings
hold for d!1. The savings of downsampling+PPSZ and of Schöning do not depend
on d.

1.3 Notation

We adapt the notational framework as used in [20]. Let V be a finite set of
variables, each of which takes values in [d] := {1, . . . , d}. A literal over x 2 V
is of the form (x 6= c) for c 2 [d]. A clause over V is a disjunction (OR) of
finite set of literals over pairwise distinct variables from V . A formula F over
V is a conjunction (AND) of clauses over V . It is sometimes convenient to
view F as a set of clauses. By vbl(F ) we denote the set of variables appearing
in F . A formula F is a (d, k)-ClSP if the variables can take on d values and
every clause has at most k literals. We also write (d, k)-ClSP to denote the
satisfiability decision problem on (d, k)-ClSP formulas. By Unique (d, k)-ClSP
we denote the promise problem of deciding whether a (d, k)-ClSP has exactly
one or no satisfying assignment.

An assignment on V is a function ↵ : V ! [d]. It satisfies the literal (x 6= c)
if ↵(x) 6= c; it satisfies a clause if it satisfies at least one literal therein; finally,
it satisfies a formula if it satisfies all its clauses. A partial assignment ↵ on V
is a partial function V ! [d]. It is convenient to view ↵ as a certain (d, 1)-CSP
over V : for example (x

1

= c
1

) ^ (x
2

= c
2

) is the partial assignment that sets x
1

to c
1

and x
2

to c
2

. Two partial assignments ↵,� over V are compatible if the
(d, 1)-CSP ↵ ^ � is satisfiable; in other words, if ↵ and � agree wherever they
are defined. For a partial assignment ↵, we denote by U

↵

the set of variables in
V on which ↵ is not defined. We denote by ↵[x = c] the (partial) assignment
that sets x to c and agrees with ↵ elsewhere.

By |= we denote usual logical implication. That is, for two formulas F,G over
a variable set V , the expression F |= G means that every total assignment ↵
that satisfies F also satisfies G.

2 The PPSZ Algorithm

Definition 2.1 (D-implication). Let F be a satisfiable ClSP formula over V ,
↵
0

a partial assignment, and D 2 N. We say that (F,↵
0

) D-implies the literal
(x 6= c) and write (F,↵

0

) ✏
D

(x 6= c) if there is a subset G of F with |G|  D
such that G ^ ↵

0

implies (x 6= c). Here, |G| is the number of clauses in G.
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Whether (F,↵
0

) |=
D

(x 6= c) holds or not can be checked in time O(|F |D ·dkD ·
poly(n)). If D is constant this is polynomial. If D is su�ciently slowly growing
this is subexponential (note that d, k are always assumed to be constant).

Definition 2.2 (Eligible values). Let F be a satisfiable ClSP formula over V ,
↵
0

a partial assignment, and x 2 U
↵0 (i.e. an unassigned variable). Then

A(x,↵
0

) := {c 2 [d] | (F,↵
0

) 6✏
D

(x 6= c)} .

That is, A(x,↵
0

) is the set of colors not ruled out by D-implication.

Note that A(x,↵
0

) also depends on F and D. However, F and D will not change
throughout the analysis, so we will assume from now on that they are clear from
the context.

Let us describe PPSZ. Given a ClSP F , it starts with the empty assignment
↵
0

= ; and attempts to incrementally add variables to it, hoping that eventually
↵
0

becomes a satisfying (total) assignment. To achieve this, PPSZ chooses a
uniformly random permutation ⇡ of V and iterates through V in the order
dictated by ⇡. When considering some x 2 V it computes A(x,↵

0

). If this is
empty then F ^ ↵

0

is unsatisfiable and PPSZ declares failure. Otherwise, it
chooses some eligible color c 2 A(x,↵

0

) uniformly at random, adds (x = c) to
↵
0

, and continues. Below we give a pseudo-code for PPSZ. Our pseudo-code is
recursive rather than iterative because this is more convenient for the analysis
of the general (multiple satisfying assignments) case.

Algorithm 1 Top-Level-PPSZ(ClSP formula F )

Choose ⇡ u.a.r. from all permutations of V (F ).
Let ↵

0

be the empty assignment.
return PPSZ(F , ⇡, ↵

0

)

Algorithm 2 PPSZ(F , ⇡, ↵
0

)
if ↵

0

is a total assignment then
return ↵

0

if it satisfies F , else failure

end if
x first variable of U

↵0 according to ⇡
c 

u.a.r.

A(x,↵
0

) (return failure if A(x,↵
0

) = ;).
return PPSZ(F , ⇡, ↵

0

^ (x = c))

Note that A(x,↵
0

) is the set of values that are “currently eligible for x”.
Now suppose ↵

0

is compatible with some satisfying assignment ↵, and the next
assignment steps of PPSZ are all according to ↵. We are actually interested how
A(x,↵

1

) will look where ↵
1

is the “future” partial assignment just before x is
processed. This motivates the following (recursive) definition.
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Definition 2.3 (Ultimately Eligible Values). Let ⇡ a permutation of the
variables, ↵ be a satisfying assignment, ↵

0

a partial assignment compatible with
↵, and x a variable in U

↵0 . Let y be the first variable of U
↵0 according to ⇡.

– If y = x set A(x,↵
0

,↵,⇡) := A(x,↵
0

).
– Otherwise, set A(x,↵

0

,↵,⇡) := A(x,↵
0

^ (y = ↵(y)),↵,⇡).

This definition allows us to write down an explicit formula for the success prob-
ability of PPSZ. We write

p(↵
0

,↵) := Pr
⇡

[PPSZ(F,⇡,↵
0

) returns ↵] .

This is the probability that PPSZ returns one particular assignment ↵. Observe
that PPSZ returns ↵ if and only if it always picks the “correct” value for every
x 2 U

↵0 . For a fixed permutation ⇡ this happens with probability 1

|A(x,↵0,↵,⇡)| .
Therefore we obtain

p(↵
0

,↵) = E
⇡

2

4
Y

x2U
↵0

1

|A(x,↵
0

,↵,⇡)

3

5 (1)

� d�
P

x2U(↵0) E⇡

[log

d

|A(x,↵0,↵,⇡)|] . (by Jensen’s Inequality)

A large part of this paper will be devoted to estimating E
⇡

[log
d

|A(x,↵
0

,↵,⇡)|].
Note that in general there is no non-trivial upper bound: If F is the empty
formula over n variables, which always evaluates to 1, then A(x,↵

0

,↵,⇡) = d
for all x and ⇡ and p(↵

0

,↵) = d�|U
↵0 |. In particular, this is d�n if we start with

the empty assignment ↵
0

= ;. In the other extreme, if there is only one possible
value of x, we can actually give a non-trivial upper bound.

Definition 2.4 (Frozen Variables). Let ↵
0

a partial assignment. A variable
x 2 U(↵

0

) is frozen (in F with respect to ↵
0

) if there is a value c 2 [d] such that
F ^ ↵

0

|= (x = c).

Here we are talking about “full implication” |=, not D-implication |=
D

.

Lemma 2.5. Let F be a (d, k)-ClSP formula, ↵ a satisfying assignment, ↵
0

a
partial assignment compatible with ↵, and x a variable in U

↵0 . If x is frozen in
F with respect to ↵

0

then

E
⇡

[log
d

|A(x,↵
0

,↵,⇡)|]  S
d,k

+ ✏
D

,

where ✏
D

is an error parameter that goes to 0 as D goes to infinity.

This lemma immediately implies Theorem 1.1.

Proof (of Theorem 1.1). Suppose F has exactly one satisfying assignment ↵. Let
↵
0

be the empty assignment. Note that every x is frozen in F with respect to
↵
0

.

p(↵
0

,↵) � d�
P

x2U(↵0) E⇡

[log

d

|A(x,↵0,↵,⇡)|]

� d�n(S

d,k

+✏

D

) .
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By making D a slowly growing function in n, we can make sure that PPSZ runs
in subexponential time and has success probability O⇤ �d�S

d,k

n

�
. Repeating this

procedure O⇤ �dSd,k

n

�
times guarantees a success probability of at least 1/2.

3 Understanding |A(x,↵0,↵,⇡)|: Proof of Lemma 2.5

For this whole section, we fix a partial assignment ↵
0

, a satisfying assignment
↵ of F that is compatible with ↵

0

, and a frozen variable x on which ↵
0

is not
defined. Without loss of generality, we let ↵ = (d, . . . , d). Since x is frozen we
have F ^ ↵

0

|= (x = d). Similar to [14] we construct critical clause trees.

3.1 Construction of Critical Clause Trees

For each color c 2 {1, . . . , d � 1} we construct a critical clause tree T
c

. This is
a tree with two types of nodes: clause nodes on even levels (this includes the
root, which is on level 0) and variable nodes on odd levels. A clause node u has a
clause label clause-label(u) 2 F and an assignment label �

u

; it will always hold
that �

u

is compatible with ↵
0

and violates clause-label(u); a clause node has at
most k � 1 children. A variable node v has a variable label var-label(v) 2 U

↵0

and exactly d � 1 children. Furthermore, each edge e = (v, w) from a variable
node v to a clause node w has an edge color edge-color(e) 2 [d� 1]. Here is how
we construct T

c

:

Create a a root vertex and set �
root

:= ↵[x = c].
while there is a leaf u without a clause label:
– Choose a clause C unsatisfied by �

u

.
– Set clause-label(u) := C.
– for all literals (y 6= d) 2 C:

• Create a new child v of u. Set var-label(v) = y.
• for all i 2 [d � 1]: Create a new child of w of v and set �

w

:=
�
u

[y = i], edge-color(v, w) = i.

Proposition 3.1. (1) The construction of T
c

terminates. (2) Suppose u is a
clause node in T

c

, C = clause-label(u) and (y 6= i) is a literal in C. If i = d then
u has a child v with var-label(v) = y. If i < d then u has an ancestor v with
var-label(v) = y. (3) If var-label(v) = var-label(v0) then v is not an ancestor
of v0. In other words, the set of variable nodes v with var-label(v) = y is an
anti-chain in T

c

.

Definition 3.2. Let T
c

be a critical clause tree and ⇡ be a permutation. A vari-
able node v is dead if its variable label comes before x in ⇡. It is alive if it is
not dead. All clause nodes are alive, too. A node u is reachable if there is a path
of alive nodes from the root to u. Reachable(T

c

,⇡) is the set of all reachable
vertices. Let G(T

c

,⇡) be the set of clause labels of the nodes in Reachable(T
c

,⇡).
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(1333)

Step 1. A clause node u with
an unsatisfying assignment �

u

(1333)

(x
1

6= 1 _ x
2

6= 3)

x2

Step 2. Find a clause violated
by �

u

. Add a child for x
2

6= 3.

(1333)

(x
1

6= 1 _ x
2

6= 3)

x2

(1133) (1233)

x
2 = 2x2

= 1

Step 3. Add (d� 1) clause node
children. Add edge labels.

(1333)

(x
1

6= 1 _ x
2

6= 3)

x2

(1133) (1233)

x
2 = 2x2

= 1

(x
1

6= 1 _ x
2

6= 1)

Step 4. Find a clause violated by
(1133). No children in this case.

Step 5. Find a clause violated
by (1233). Add a child for (x

3

6= 3).

(1333)

(x
1

6= 1 _ x
2

6= 3)

x2

(1133) (1233)

x
2 = 2x2

= 1

(x
1

6= 1 _ x
2

6= 1) (x
2

6= 2 _ x
3

6= 3)

x3

(1333)

(x
1

6= 1 _ x
2

6= 3)

x2

(1133) (1233)

x
2 = 2x2

= 1

(x
1

6= 1 _ x
2

6= 1) (x
2

6= 2 _ x
3

6= 3)

x3

(1213) (1223)

x
3 = 2x3

= 1

Step 6. Add (d� 1) clause node children and
edge labels.

(1333)

(x
1

6= 1 _ x
2

6= 3)

x2

(1133) (1233)

x
2 = 2x2

= 1

(x
1

6= 1 _ x
2

6= 1) (x
2

6= 2 _ x
3

6= 3)

x3

(1213) (1223)

x
3 = 2x3

= 1

(x
1

6= 1 _ x
3

6= 1) (x
1

6= 1 _ x
3

6= 2)

Step 7+8. Find clauses violated by (1213) and
(1223), respectively. No new children here.

Fig. 1. Construction of a critical clause tree for d = 3, V = {x
1

, x
2

, x
3

, x
4

}, ↵ =
(3, 3, 3, 3), ↵

0

= ;, variable x
1

, and color c = 1. The formula F contains, amongst
others, the clauses (x

1

6= 1 _ x
2

6= 3) ^ (x
1

6= 1 _ x
2

6= 1) ^ (x
2

6= 2 _ x
3

6= 3) ^ (x
1

6=
1 _ x

3

6= 1) ^ (x
1

6= 1 _ x
3

6= 2).
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Lemma 3.3 (Critical clause trees model local reasoning). Let ⇡ be a
permutation of the variables and c 2 [d � 1] a color. Let � be the restriction of
↵ to the variables coming before x in ⇡. Then G(T

c

,⇡) ^ ↵
0

^ � ✏ (x 6= c).

We encourage the reader to verify the lemma for the critical clause tree in the
figure above, for example for ⇡ = (x

2

, x
1

, x
3

, x
4

) or ⇡ = (x
1

, x
2

, x
3

, x
4

).

Corollary 3.4. If |Reachable(T
c

,⇡)|  D then c 62 A(x,↵
0

,↵,⇡). In other
words, PPSZ can eliminate color c for x by local reasoning.

Proof (Proof of Lemma 3.3). We show the following equivalent statement: Let �
be a total assignment that is compatible with ↵

0

^ � and �(x) = c 6= d. Then �
does not satisfy G(T

c

,⇡). We will prove this statement constructively by finding
a clause that is violated by �.

Set u to be the root of T
c

.
do as long as possible:
– Let C := clause-label(u).
– if there is some (y 6= d) 2 C with �(y) = i 6= d:

• Let v be the child of u with var-label(v) = y.
• Let w be the child of v such that edge-color(v, w) = i.
• Set u = w and continue.

– else: return u.

Let u be the vertex returned by this procedure. Consider any variable node v on
the path from the root to u and let y := var-label(v). By construction �

u

(y) =
�(y) 6= d. This means that y comes after x in ⇡: Otherwise, �(y) = ↵(y) = d
by assumption on �. So y comes after x, every ancestor v of u is alive, and u is
reachable. Therefore C := clause-label(u) 2 G(T

c

,⇡).
We claim that � violates C: First consider a literal (y 6= d) 2 C. If �(y) 6= d,

the above procedure would have continued, and not returned u. So �(y) = d,
and � does not satisfy (y 6= d). Second consider a literal (z 6= i) 2 C for some
i 6= d. By Proposition 3.1 z appears as a variable label above u, and therefore
�(z) = �

u

(z). Since �
u

violates C, it violates the literal (z 6= i), thus � violates
it, too. We conclude that � violates C. ut

For c 2 [d�1], we define an indicator variableR
c

. It is 1 if |Reachable(T
c

,⇡)| >
D| and 0 otherwise. By the above corollary we know that R

c

= 0 implies
c 62 A(x,↵

0

,↵,⇡). Since d 2 A(x,↵
0

,↵,⇡) for all ⇡ we get |A(x,↵
0

,↵,⇡)| 
1 +

P
d�1

c=1

R
c

. We now have to show that E
h
log

d

⇣
1 +

P
d�1

c=1

R
c

⌘i
 S

d,k

+ ✏
D

.

Note that R
c

depends on the number of reachable nodes. It is di�cult to un-
derstand the worst-case behavior of the random variable

P
R

c

. Let us therefore
define a new ensemble of random variables:

Ph

c

=

(
1 if there exists a reachable vertex at depth h in T

c

,

0 else.
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Note that if m := |Reachable| is very large, then there exist a reachable vertex
at depth at least h, where h is logarithmic in m. The precise connection is: Let
h be the largest even integer with 2(h/2)(k�1)(d�1)  D. Then R

c

 Ph

c

. So it

su�ces to bound E
h
log

d

⇣
1 +

P
d�1

c=1

Ph

c

⌘i
from above. Note that the behavior

of
P

Ph

c

depends on (i) the shape of the critical clause trees; (ii) the concrete
arrangement of variable labels in all d � 1 trees. All can be pretty complex.
Luckily, we can prove that in the worst-case, everything looks quite nice. See the
full version for a proof of the following four results.

Lemma 3.5 (Independence Between Trees, Informal). In the worst case,
the trees T

1

, . . . , T
d�1

do not share any variable labels.

This follows from a certain monotonicity argument and the concavity of log
d

.

Lemma 3.6 (Independence Within a Tree, Informal). In the worst case,
no variable label appears twice within a tree.

A version of this lemma also appears in [14]. It follows from the FKG inequal-
ity [7] and the fact that Ph

c

is monotone in each of the events “y comes after x
in ⇡”. At this point we can forget all about variable and clause labels. Instead of
thinking of ⇡ as a permutation on U

↵0 , we think of it as assigning each variable
x a random value ⇡(x) 2 [0, 1]. With probability 1 this defines a permutation.
Thus the ensemble (Ph

1

, . . . , Ph

d�1

) can be produced by the following random
experiment: Select p 2 [0, 1] uniformly at random (this corresponds to choos-
ing ⇡(x)). Then delete each odd-level node with probability p, independently (if
⇡(v) < ⇡(x) then the node labeled v is dead). Now Ph

c

= 1 if and only if after
deletion, T

c

contains a path of length h starting at its root.

Observation 3.7 (Deletion in Infinite Trees, Informal) In the worst case,
all T

c

are infinite trees in which an even-level node has exactly k � 1 children
and an odd-level node exactly d� 1.

This “worst case” of infinite trees can of course not happen for an actual ClSP
instance F . However, it is useful to imagine infinite trees in the analysis. Let
us assume the trees T

1

, . . . , T
d�1

look as in the worst case outlined above, and
write Y h :=

P
d�1

c=1

Ph

c

. The distribution of Y h does not depend on F , only on
h, d, and k. We define P

c

to 1 if T
c

has an infinite path of alive vertices and set
Y :=

P
d�1

c=1

Y
c

.

Lemma 3.8. E[log
d

(1 + Y h)] converges to E[log
d

(1 + Y )] = S
d,k

as h ! 1.

Equivalently, E[log
d

(1 + Y h)] = S
d,k

+ ✏
D

for some ✏
D

that converges to 0 as D
grows. To sum up,

E
⇡

[log
d

|A(x,↵
0

,↵,⇡)|]  E
⇥
log

d

�
1 + Y h)

�⇤
= S

d,k

+ ✏
D

.
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4 General (d, k)-ClSP

The intuition behind the analysis of the general case is: Our partial assignment
↵
0

represents the current state of PPSZ (i.e. the variable assignments it has
already made). If a variable x is frozen at this point in time (cf. Definition 2.4),
then Lemma 2.5 gives us an upper bound on E[|A(x,↵

0

,↵,⇡)|]. Otherwise, if x
is not frozen, we have at least a 2/d chance of guessing a value for x that keeps
F satisfiable.

Below we will carefully track how E[log
d

|A(x,↵
0

,↵,⇡)|] changes over time af-
ter x becomes frozen. Surprisingly we only use one property of our D-implication
mechanism: adding more information to ↵

0

can only decrease the number of el-
igible colors:

Let y 6= x and c := ↵(y). Then A(x,↵
0

^ y = c) ✓ A(x,↵
0

).

4.1 Definitions and Notation

Through most of the analysis, we consider a certain “snapshot” of PPSZ. At
this point in time it has already assigned some variables, and we represent this
by the partial assignment ↵

0

.

Definition 4.1. Let F be a (d, k)-ClSP formula and ↵
0

a partial assignment.
Let x 2 U(↵

0

).

– A(x,↵
0

) is the set of eligible values as in Definition 2.2.
– S

↵0(x) is the set of values c 2 [d] such that F ^ ↵
0

^ (x = c) is satisfiable.
– S

↵0 := {(x, c) 2 U(↵
0

)⇥ [d]
��c 2 S

↵0(x)}.
Note that a variable x is frozen if and only if |S

↵0(x)| = 1. Also, S
↵0(x) ✓

A(↵
0

, x). We partition the set U(↵
0

) of yet unassigned variables into the parts:
U(↵

0

) = V
fo

(↵
0

) [̇V
fr

(↵
0

) [̇V
nf

(↵
0

) where

– V
nf

(↵
0

) := {x 2 U(↵
0

) | |S
↵0(x)| � 2}, i.e., the set of non-frozen variables.

– V
fo

(↵
0

) := {x 2 U(↵
0

) | |A(↵
0

, x)| = 1}, i.e., those variables for which the
D-implication mechanism of PPSZ can rule out all but one value. Clearly,
such a variable is also frozen. We call such a variable forced.

– V
fr

(↵
0

) := the set of frozen variables not in V
fo

(↵
0

).

Lemma 2.5 guarantees that E
⇡

[log
d

|A(x,↵
0

,↵,⇡)|]  S
d,k

+ ✏
D

whenever x

is frozen. We write S := S
d,k

+ ✏
D

and G := max{S, 1 � log

d

e

2

}. As in [10] we
define a cost function:

Definition 4.2. Let ↵
0

be a partial and ↵ a total assignment and x a variable.
We define cost(↵

0

,↵, x) as follows:

– If x 62 U(↵
0

) or ↵
0

,↵ are incompatible or ↵ violates F , or x is forced with
respect to ↵

0

then cost(↵
0

,↵, x) = 0;
– else if x 2 V

nf

(↵
0

) then cost(↵
0

,↵, x) = G;
– else (if x 2 V

fr

(↵
0

)) then cost(↵
0

,↵, x) = E
⇡

[log
d

(|A(x,↵
0

,↵,⇡)|)].
We define cost(↵

0

,↵) =
P

x2U(↵0)
cost(↵

0

,↵, x).

Note that cost(↵
0

,↵)  G · n(↵
0

) by Lemma 2.5.
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4.2 A distribution over satisfying assignments

Let ↵
0

be a partial assignment such that F ^ ↵
0

is satisfiable. We define a (not
computationally e�cient) process that samples a random satisfying assignment:

while U(↵
0

) 6= ;:
– Pick (x, c) 2 S

↵0 .
– Add (x = c) to ↵

0

.
return ↵

0

.

Note that this process always outputs a total satisfiable assignment compatible
with (the original) ↵

0

. Let Q(↵
0

,↵) be the probability that this process, started
with ↵

0

, outputs ↵. This defines a probability distribution over the set of satis-
fying assignments of F . Let p(↵

0

,↵) denote the probability that PPSZ(F , ↵
0

)
returns ↵ .

Lemma 4.3. Let ↵ be a satisfying assignment, ↵
0

be a partial assignment com-
patible with ↵. Then p(↵

0

,↵) � Q(↵
0

,↵) · d� cost(↵0,↵).

With this lemma in hand, we can finish the proof of Theorem 1.2.

Proof (of Theorem 1.2). Let ↵
0

be the empty assignment. Then

Pr[PPSZ(F,↵
0

) succeeds] =
X

↵2sat(F )

p(↵
0

,↵)

�
X

↵2sat

V

(F )

Q(↵
0

,↵) · d� cost(↵0,↵) �
X

↵2sat

V

(F )

Q(↵
0

,↵) · d�Gn = d�Gn .

ut
The rest of this section is devoted to proving Lemma 4.3. We prove p(↵

0

,↵) �
Q(↵

0

,↵) · d� cost(↵0,↵) by induction over |U(↵
0

)|, the number of variables unas-
signed in ↵

0

. If ↵
0

is total the statement holds trivially.
For the induction step suppose ↵

0

is not total. PPSZ randomly picks x 2
U(↵

0

) and c 2 A(x,↵
0

), adds (x = c) to ↵
0

and continues. For the rest of
this inductive proof, the meaning of ↵ and ↵

0

will not change. We thus drop
the ↵

0

from S
↵0 ,S↵0(x),A(x,↵

0

),U
↵0 ,Vnf

(↵
0

), . . . . We also write S,S(x),A(x)
and write s := |S|, s(x) := |S(x)|, a(x) := |A(x)|. Finally, since PPSZ adds
(x = c) to ↵

0

, we have to look at partial assignments that extend ↵
0

by one
variable. For this we write ↵x=c

0

:= ↵
0

^ (x = c). Most of the time we consider
partial assignments that fix one additional variable x to ↵(x). We denote this

by ↵x

0

:= ↵
x=↵(x)

0

.

Given the current partial assignment ↵
0

, PPSZ randomly picks some x 2 U
and c 2 A(x) and continues with ↵x=c

0

. Thus

p(↵
0

,↵) = E
x2U


E

c2A(x)

[p(↵x=c

0

,↵)]

�
= E

x2U


1

a(x)
· p(↵x=↵(x)

0

,↵)

�
,
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The second equality holds since p(↵x=c

0

,↵) = 0 for c 6= ↵(x). Applying the

induction hypothesis to ↵
x=↵(x)

0

(or ax
0

, for short):

p(↵
0

,↵) � E
x2U


Q(↵x

0

,↵)d� cost(↵

x

0 ,↵)

a(x)

�

We could apply Jensen’s inequality to the above expectation. However, the
argument of E above includes Q, which is not necessarily very concentrated
around its expectation, and Jensen’s inequality does not seem to yield any usable
bound. To circumvent this problem, we introduce a new probability distribution
⇠(x) over U(↵

0

) that is proportional to Q(↵x

0

,↵). Note that

Q(↵
0

,↵) = E
(x,c)2S

Q(↵x=c

0

,↵) =
1

s

X

x2U

X

c2S(x)

Q(↵x=c

0

,↵) =
1

s

X

x2U
Q(↵x

0

,↵) ,

and therefore ⇠(x) := Q(↵

x

0 ,↵)

s·Q(↵0,↵)
is a probability distribution over U . Thus,

p(↵
0

,↵) � E
x2U


1

a(x)
·Q(↵x

0

,↵) · d� cost(↵

x

0 ,↵)

�

=
s ·Q(↵

0

,↵)

|U| E
x⇠⇠


d� cost(↵

x

0 ,↵)

a(x)

�

� s ·Q(↵
0

,↵)

|U| dEx⇠⇠

[� cost(↵

x

0 ,↵)�log

d

a(x)] . (by Jensen’s)

In order for our inductive prove to go through, the last expression should be at
least Q(↵

0

,↵) · d� cost(↵0,↵). This happens if and only if

s

|U| · d
E

x⇠⇠

[� cost(↵

x

0 ,↵)�log

d

a(x)] � d� cost(↵0,↵) ()

log
d

s

|U| � E
x⇠⇠

[cost(↵x

0

,↵) + log
d

a(x)] � � cost(↵
0

,↵) ()

E
x⇠⇠

[cost(↵
0

,↵)� cost(↵x

0

,↵)]� E
x⇠⇠

[log
d

a(x)] + log
d

s

|U| � 0 . (2)

The proofs of the next three lemmas are quite technical and demanding but do
not introduce new key ideas. They can be found in the full version of this paper.

Lemma 4.4. E
x⇠⇠

[cost(↵
0

,↵)�cost(↵x

0

,↵)] � 1

s

⇣
G
P

y2Vnf
s(y) +

P
y2Vfr

log
d

a(y)
⌘
.

Lemma 4.5. E
x⇠⇠

[log
d

a(x)] 
P

x2U log

d

a(x)

s

+
P

x2Vnf
(s(x)�1)

s

.

Lemma 4.6. log
d

s

|U| � log
d

(e)
P

y2Vnf
(s(y)�1)

s

.
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Let (⇤) denote the left-hand side of inequality (2).

s · (⇤) � G
X

y2Vnf

s(y) +
X

y2Vfr

log
d

a(y)�
X

x2U
log

d

a(x)�
X

x2Vnf

(s(x)� 1) + log
d

(e)
X

y2Vnf

(s(y)� 1)

=
X

y2Vnf

(Gs(y)� s(y) + 1 + log
d

(e)(s(y)� 1))�
X

y2U
log

d

a(y)(1� I
y2Vfr) .

Note that log
d

a(y)(1� I
y2Vfr) is equal to 0 if y 2 V

fr

[V
fo

and at most 1 if y 2
V

nf

. Thus it su�ces to show that
P

y2Vnf
(Gs(y)� s(y) + log

d

(e)(s(y)� 1)) � 0.
We will show that every summand is non-negative for each y 2 V

nf

:

Gs(y)s(y) + log
d

(e)(s(y)� 1) � 0 , G � 1� log
d

(e) · s(y)� 1

s(y)
.

The last inequality holds because s(y)�1

s(y)

� 1/2 for y 2 V
nf

and G � 1� log

d

(e)

2

by definition. This finishes the proof.

5 Conclusion and Open Problems

We have shown how to apply the PPSZ algorithm to (d, k)-ClSPs. In the unique
case we established correlation inequalities showing that PPSZ behaves as ex-
pected. This improves the fastest known running time for Unique (d, k)-ClSP
algorithm for almost all values (d, k). These results transfer to the general case
for k � 4.

In our analysis of the general case we only distinguish frozen and non-frozen
variables. That is, for non-frozen variables we make no di↵erence between vari-
ables with two, three, or even d viable values. A more fine-grained analysis could
give an improved result for the general case. However we do not know how to
analyze the transition between di↵erent types of “non-frozen-ness”.

We conjecture that the running time in the general case is no worse than in
the unique case and that the current discrepancy for k = 2, 3 is a shortcoming
of our analysis, not the algorithm.
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